Thursday 1:30 PM–2:05 PM in Main Room

Visual Diagnostics for More Effective Machine Learning

Benjamin Bengfort

Audience level:
Intermediate

Description

Modeling is often treated as a search activity: find some combination of features, algorithm, and hyperparameters that yields the best score after cross-validation. In this talk, we will explore how to steer the model selection process with visual diagnostics and the Yellowbrick library, leading to more effective and more interpretable results and faster experimental workflows.

Abstract

The model selection process is a search for the best combination of features, algorithm, and hyperparameters that maximize F1, R2, or silhouette scores after cross-validation. This view of machine learning often leads us toward automated processes such as grid searches and random walks. Although this approach allows us to try many combinations, we are often left wondering if we have actually succeeded.

By enhancing model selection with visual diagnostics, data scientists can inject human guidance to steer the search process. Visualizing feature transformations, algorithmic behavior, cross-validation methods, and model performance allows us a peek into the high dimensional realm that our models operate. As we continue to tune our models, trying to minimize both bias and variance, these glimpses allow us to be more strategic in our choices. The result is more effective modeling, speedier results, and greater understanding of underlying processes.

Visualization is an integral part of the data science workflow, but visual diagnostics are directly tied to machine learning transformers and models. The Yellowbrick library extends the scikit-learn API providing a Visualizer object, an estimator that learns from data and produces a visualization as a result. In this talk, we will explore feature visualizers, visualizers for classification, clustering, and regression, as well as model analysis visualizers. We'll work through several examples and show how visual diagnostics steer model selection, making machine learning more effective.

Subscribe to Receive PyData Updates

Subscribe

Tickets

Get Now