Friday 10:15 AM–12:00 PM in Tutorial Room

Writing Continuous Applications with Structured Streaming Python APIs in Apache Spark

Jules Damji

Audience level:
Intermediate

Description

We are amidst the Big Data Zeitgeist era in which data comes at us fast, in myriad forms and formats at intermittent intervals or in a continuous stream, and we need to respond to streaming data immediately. This need has created a notion of writing a streaming application that’s continuous, reacts and interacts with data in real-time. We call this continuous application, which we will discuss.

Abstract

We are amidst the Big Data Zeitgeist era in which data comes at us fast, in myriad forms and formats at intermittent intervals or in a continuous stream, and we need to respond to streaming data immediately. This need has created a notion of writing a streaming application that’s continuous, reacts and interacts with data in real-time. We call this continuous application.

In this talk we will explore the concepts and motivations behind the continuous application, how Structured Streaming Python APIs in Apache Spark 2.x enables writing continuous applications, examine the programming model behind Structured Streaming, and look at the APIs that support them.

Through a short demo and code examples, I will demonstrate how to write an end-to-end Structured Streaming application that reacts and interacts with both real-time and historical data to perform advanced analytics using Spark SQL, DataFrames and Datasets APIs.

You’ll walk away with an understanding of what’s a continuous application, appreciate the easy-to-use Structured Streaming APIs, and why Structured Streaming in Apache Spark 2.x is a step forward in developing new kinds of streaming applications.

Subscribe to Receive PyData Updates

Subscribe

Tickets

Get Now