Reproducibility is a cornerstone of scientific methods. Especially in production Machine Learning it's crucial to ensure that hidden source of randomness is not a real reason for a model performance improvement. In my talk I will elaborate on importance of reproducibility and show how we build reproducible machine learning pipelines at Netguru.
Reproducibility is a cornerstone of scientific methods. Especially in production Machine Learning it's crucial to ensure that hidden source of randomness is not a real reason for a model performance improvement. Although, reproducibility in building machine learning papers seems to be must-have, it's still not a standard.
Outline of talk: