Businesses derive value from their customer base. This makes it critical to forecast the value of a customer to the business -- critical but tricky. We'll introduce probabilistic models for estimating customer lifetime value, look at real world data across industries, and talk about how this fits into a business analysis toolbox (spoiler alert: it's everywhere).
Businesses derive value from their customer base. This makes it critical to be able to forecast the value of a customer to the business. At the same time, modeling customer behavior is not a straightforward measurement -- the data generating process is subtle, data is characteristically sparse & stochastic, and heterogeneity abounds.
We'll look at business analysis from a customer-centric mindset, where analysis of growth and retention is at the core. We'll dive into the model of Fader & Hardie, which provides a principled, probabilistic model to forecast customer lifetime value (CLV) from a stream of purchases. We'll motivate multilevel models and show how they can account for customer heterogeneity in purchase behavior. We'll analyze predictive fits using lifetimes, an open-source implementation of several useful Bayesian CLV models. We'll look across businesses and briefly cover insights that come from looking at large-scale datasets of customer purchase behavior.
CLV estimates have a multitude of business uses, across: forecasting of cashflow, profitability and demand investment & valuation customer base segmentation allocation of marketing spend, or * monitoring the health of the business
Data scientists and business analysts should leave this talk with another tool in their predictive modeling toolkit. More importantly, they should have clarity on how customer lifetime value is defined, how it can be reasoned about, and how forward-looking estimates can be fit from purchase data.