
Unlocking the power of 
gradient-boosted trees 

using LightGBM)

Pedro Tabacof
PyData London 2022



LightGBM: the swiss-army knife for tabular ML

Objectives:

1. Convince you to start using LightGBM or 
XGBoost for tabular/structured problems 

2. Give a taste of its more interesting features 
and explain how they work 

I will not go over "unstructured problems" such as 
document or image classification, speech-to-text, 
language translation, image creation, etc.

@tunguz

https://twitter.com/tunguz/media


Personal introduction

● Originally from Brazil, now based in Dublin
● Staff data scientist at a mobile gaming company 

(Wildlife Studios)
● Five years of experience with applied machine learning 

(antifraud, credit risk, churn, lifetime value, and 
marketing attribution)

● Master's degree on Deep Learning (variational 
autoencoders), but never actually used DL to solve any 
business problem!



Agenda

● Motivating example
● How gradient-boosted trees work
● What are the important tuning parameters
● Handling missing values and categorical features
● The loss function menu, including custom losses
● Early stopping, sample weights, and other cool features
● Model interpretability



Motivating example: Kaggle house prices prediction

Standard regression problem:

● Predict house prices with 80 features available of different types
● Only 3k samples in total, half for training and half for testing
● Evaluated on the RMSE of the log-price
● Not real-life but instructive (Kaggle is never real-life anyway!)



Trivial LightGBM baseline

In 18 lines we can read the data, 
train a LightGBM model with no 
tuning or feature engineering 
whatsoever, score the test set 
and have a submission ready. 

But how does it perform?



But how does it perform?

Not great, not terrible:
0.13 roentgen log RMSE (top 
30% of the submissions).

Top solutions are usually a 
heavily tuned and 
engineered ensemble of 
diverse models.

Competition score distribution:



Kaggle gradient-boosted trees performance

@fchollet

Gradient-boosted trees (LightGBM, 
XGBoost, Catboost) dominate 
structured/tabular data competitions.

Neural networks dominate unstructured 
data competitions.

Not only can they give you a reasonable 
baseline with few lines of code, they can 
also get you to the top!

https://twitter.com/fchollet/status/1113476428249464833?lang=en


The LightGBM magic

The dataset is quite complex, even though it is small:

How does LightGBM handle all that under the hood?

Where are the standard scalers? 

The missing value imputer? 

The categorical encoders?

The parameter tuning?

The feature selection?



First, let's start with a single regression tree:

LightGBM grows trees leaf-wise. It will choose the leaf with max delta loss to grow. 
This is based on the gradient of the loss: which threshold best splits the sum of 
gradients between each child? LightGBM provides a fast approximation using 
histograms of the gradients (i.e. by mapping to bins).

How does gradient-boosting works?



How does gradient-boosting works?

Gradient Boosting Trees for Classification: 
A Beginner’s Guide

Second, let's ensemble them:

Each new tree tries to predict the residual 
(error at the current iteration).

Each tree's prediction is multiplied by the 
learning_rate to reduce overfitting.

The final prediction is: 
initial_prediction + 
learning_rate*predicted_residual_1 
+ … + 
learning_rate*predicted_residual_N

https://medium.com/swlh/gradient-boosting-trees-for-classification-a-beginners-guide-596b594a14ea
https://medium.com/swlh/gradient-boosting-trees-for-classification-a-beginners-guide-596b594a14ea


What are some parameters you can tune?

The most important parameters are the following:

● n_estimators: use between 100 and 1000
● learning_rate : use between 0.01 and 0.1
● max_depth: use between 5 and 20
● num_leaves: use default
● bagging_fraction or feature_fraction: to make it more like a RF
● objective: more on the choices here later

You can always tune them with grid search, random search, Bayesian 
optimization or early stopping for the number of trees (more on this later).



Missing values: standard answer

Whenever I interview data science candidates, I always ask how they would 
handle missing values in their dataset. A typical answer is structured like this:

● Numerical features: use mean or median
● Categorical features: use unknown class

Sometimes I hear about creating a model to impute the missing values, but I 
almost never hear that some models handle them natively! 



Missing values: LightGBM answer

Missing value splits are learned separately on each node:

Say we've a node that splits on Square Meters, below 
100 it goes left and above it goes right:

If a missing value comes in the training set, it will create a 
separate missing split that minimizes the loss:

SqMeters < 100

SqMeters < 100

missing



Missing values: disaster averted!

"Hey, my credit score on your model is 1000 (perfect), I'm pretty sure it is wrong as 
I'm a terrible credit card payer!"
-Business analyst to me at some fintech company

The model was indeed wrong: a large set of important features were missing in 
production for a small set of users, but they were never missing in training.

The default missing values behaviour was leading to low risk predictions. 

Never accept missing in production if there were none in training.



Categorical encoding: standard answer

Typical answers:

● Label encoding: categories become numbers like 0, 1, 2, 3, 4, … 
(surprisingly good for trees!)

● One-hot encoding: categories become a set of binary features like 000, 001, 
010, … (not great for trees unless the cardinality is low)

● Target encoding: average target value by category (powerful but risky)

● Frequency encoding: category frequency (might be a useful complement)

https://medium.com/data-design/visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931


Categorical encoding: LightGBM answer

LightGBM uses histogram splits for categorical features as well: 

1. It bins the categories together based on their loss gradient
2. This creates a histogram which is then sorted according to the objective
3. It finds the best split on the sorted histogram

This process is not so unlike target encoding, which explains its usefulness.

For a model specialized in categorical data, check out Catboost.

https://catboost.ai/


Loss functions menu

LightGBM offers ~15 different loss functions:

● Regression
○ L2: mean squared error (default, recovers the mean value)
○ L1: mean absolute error (good for outliers, recovers the median value*)
○ MAPE: mean absolute percentage error (good for time series)
○ Quantile: predict quantiles (might be used for prediction intervals)
○ Tweedie and gamma (good for skewed problems)
○ Poisson (good for count data)

● Classification
○ Logloss for binary classification (logloss leads to calibrated probabilities)
○ Multiclass and cross-entropy for multi-class problems

● Ranking (lambdarank)
● Survival analysis: 😔 but XGBoost offers some possibilities

*see this awesome blog post on MSE vs MAE vs log-transform for skewed data problems: Honey, I shrunk the target variable

https://florianwilhelm.info/2020/05/honey_i_shrunk_the_target_variable/


Lifetime value (LTV) modelling example

LTV is bimodal and right-skewed: most users don't spend a cent, some spend 
thousands.

First attempt: two-stage model, one classifier for
paying users, one regressor to predict paying
user value.

Second attempt: zero-inflated lognormal neural
network.

Best solution: LightGBM with the Tweedie loss. A Deep Probabilistic Model for Customer 
Lifetime Value Prediction

https://arxiv.org/abs/1912.07753
https://arxiv.org/abs/1912.07753


Custom loss functions

You can even create your own custom loss function! You "only" need to provide 
the gradient and hessian.

Simple application:
Asymmetric regression
when overpredicting is
worse than underpredicting.

Custom Loss Functions for Gradient Boosting

https://towardsdatascience.com/custom-loss-functions-for-gradient-boosting-f79c1b40466d


You can even create your own custom loss function! You "only" need to provide 
the gradient and hessian.

Simple application:
Asymmetric regression
when overpredicting is
worse than underpredicting.

Custom loss functions

Custom Loss Functions for Gradient Boosting

https://towardsdatascience.com/custom-loss-functions-for-gradient-boosting-f79c1b40466d


Early stopping

Choose the number of iterations that 
minimizes the validation loss.

reg.fit(train_X, train_y, 
callbacks=[lgbm.early_stopping(5)], 
eval_set=(val_X, val_y))

For the Kaggle housing example, it 
netted a tiny score improvement (80 
positions / 2% improvement).

How to use early stopping in Xgboost training?

https://mljar.com/blog/xgboost-early-stopping/


Sample / class weights

Class weights (class creation): class_weight(dict, 'balanced' or None)

Sample weights (fit): sample_weight(array-like of shape = [n_samples])

Use them for imbalanced datasets instead of over/under sampling as it's more 
efficient and leads to similar results.

Just don't use SMOTE:

@JFPuget

https://twitter.com/JFPuget/status/1535323707253882881


Other cool features

● Monotonicity constraints: force a monotonic relation between one or more 
features and the predictions, which is quite useful for interpretability or 
business constraints!

● Random forest "boosting" method: sometimes you just need a good old RF. 

● Distributed computation and GPU support: never tried myself but XGBoost 
for Spark works wonders with large datasets.



Interpretability: SHAP

Use SHAP instead of split count or gain.

Individual examples below, overall importance on
the right:

https://github.com/slundberg/shap


Conclusion and takeaways

● LightGBM and XGBoost provide not only a reasonable baseline with minimal 
tuning and engineering necessary, but they also allow you to get to the next 
level.

● Most of your tabular modelling needs are covered with built-in features or 
well-integrated libraries (e.g. Sklearn, pandas-profiling, SHAP).

● This leaves you time to focus on what really matters in applied ML:



Conclusion and takeaways

● LightGBM and XGBoost provide not only a reasonable baseline with minimal 
tuning and engineering necessary, but they also allow you to get to the next 
level.

● Most of your tabular modelling needs are covered with built-in features or 
well-integrated libraries (e.g. Sklearn, pandas-profiling, SHAP).

● This leaves you time to focus on what really matters in applied ML:
○ Building new features (new data sources or feature engineering)
○ Proper evaluation methodology (random train-test split is never enough!) 
○ Translating model results into the business bottomline ($)
○ Automated decision making with the model outputs ("the last mile is the longest")
○ Model deployment infrastructure and monitoring

https://www.featuretools.com/
https://www.youtube.com/watch?v=wWxqnZb-LSk


Thanks!

Check out the notebook here

Follow me on Twitter at @PedroTabacof or add me on Linkedin

https://github.com/tabacof/pydata2022london/blob/main/PyData%20London%202022%20-%20LightGBM%20House%20Prices%20Example.ipynb
https://twitter.com/PedroTabacof
https://www.linkedin.com/in/tabacof/

