Unlocking the power of
gradient-boosted trees

using >“ LightGBM

Pedro Tabacof
PyData London 2022

LightGBM: the swiss-army knife for tabular ML

Objectives:

1. Convince you to start using LightGBM or
XGBoost for tabular/structured problems

2. Give a taste of its more interesting features , R Da s
and explain how they work o | already 36.

| will not go over "unstructured problems" such as
document or image classification, speech-to-text,
language translation, image creation, etc.

https://twitter.com/tunguz/media

Personal introduction %

e Originally from Brazil, now based in Dublin [m&:l] bank
e Staff data scientist at a mobile gaming company an

(Wildlife Studios) -

e Five years of experience with applied machine learning ’f..d
(antifraud, credit risk, churn, lifetime value, and P
marketing attribution)

e Master's degree on Deep Learning (variational
autoencoders), but never actually used DL to solve any came - o
business problem!

Cited by

i10-index

5 5

90

I I | 45

- I I l i
2015 2016 2017 2018 2019 2020 2021 2022

Agenda

Motivating example

How gradient-boosted trees work

What are the important tuning parameters

Handling missing values and categorical features

The loss function menu, including custom losses

Early stopping, sample weights, and other cool features
Model interpretability

Motivating example: Kaggle house prices prediction

Standard regression problem:
Predict house prices with 80 features available of different types
Only 3k samples in total, half for training and half for testing

o

[

e Evaluated on the RMSE of the log-price

e Not real-life but instructive (Kaggle is never real-life anyway!)

‘@) GettingStarted Prediction Competition

House Prices - Advanced Regression Techniques

Predict sales prices and practice feature engineering, RFs, and gradient boosting

Kaggle 4,221 teams - Ongoing

Trivial LightGBM baseline

import pandas as pd
import lightgbm as lgbm

In 18 lines we can read the data, imeert numey as ne
train a LightGBM model With no train = pd.read_csv("house-prices-advanced-regression-techniques/train.csv")

train["train"]=True

tu n I ng O r featu re e n g I n ee rl n g test = pd.read csv("house-prices-advanced-regression-techniques/test.csv")

test["train"]=False

whatsoever, score the test set test["salePrice’] = np.nan
and have a submission ready. s L S

cat_features = [c for c, dt in df.dtypes.items() if dt=='object']
df[cat_features] = df[cat_features].astype("category")

But how does it perform?

df[df.train].drop(["train", "SalePrice"], axis=1)
np.log(df[df.train]["SalePrice"])

train_X
train_y

reg = lgbm.LGBMRegressor()
reg.fit(train_X, train_y)

LGBMRegressor ()

test_X = df[~df.train].drop(["train", "SalePrice"], axis=1)

df.loc[~df.train, "SalePrice"] = np.exp(reg.predict(test_X))

df.loc[~df.train, ["Id", "SalePrice"]].to_csv("submission.csv", index=False)

But how does it perform?

_ Competition score distribution:
Not great, not terrible:

0.13 reentger log RMSE (top o |
30% of the submissions). »
12
t 10
Top solutions are usuallya § ,
heavily tuned and 6
engineered ensemble of .
diverse models. ’
0 R PR ——

Log RMSE score

Kaggle gradient-boosted trees performance

Grad ient-bOOSted treeS (L|g htGBM, Primary ML software tool used py top-5 teams on Kaggle
XG BOOSt, Catboost) dominate in each competition (n=120)
structured/tabular data competitions. o

LightGBM
Neural networks dominate unstructured XGB°°S‘=

data competitions. PyTorch §

Not only can they give you a reasonable s-
baseline with few lines of code, they can Fastal
also get you to the top! catte I

0 10 20 30 40

@fchollet

https://twitter.com/fchollet/status/1113476428249464833?lang=en

The LightGBM magic

The dataset is quite complex, even though it is small:

Alerts €D Reproduction

Dataset statistics

Number of variables 83
Number of observations 2919
Missing cells 15424
Missing celis (%) 6.4%
Duplicate rows 0
Duplicate rows (%) 0.0%
Total size in memory 1.8 MiB
Average record size in memory 657.0B

Variable types
Numeric 39
Categorical 42
Boolean 2

How does LightGBM handie all that under the hood?

Where are the standard scalers?
The missing value imputer?

The categorical encoders?

The parameter tuning?

The feature selection?

How does gradient-boosting works?

First, let's start with a single regression tree:

.’\..%\..{;?..

Leaf-wise tree growth

LightGBM grows trees leaf-wise. It will choose the leaf with max delta loss to grow.
This is based on the gradient of the loss: which threshold best splits the sum of
gradients between each child? LightGBM provides a fast approximation using
histograms of the gradients (i.e. by mapping to bins).

How does gradient-boosting works?

Second, let's ensemble them:

Each new tree tries to predict the residual
(error at the current iteration).

Each tree's prediction is multiplied by the
learning rate to reduce overfitting.

The final prediction is:

initial prediction +

learning rate*predicted residual 1
+ .+

learning rate*predicted residual N

Error

Iterations

Gradient Boosting Trees for Classification:

A Beaqinner’s Guide

https://medium.com/swlh/gradient-boosting-trees-for-classification-a-beginners-guide-596b594a14ea
https://medium.com/swlh/gradient-boosting-trees-for-classification-a-beginners-guide-596b594a14ea

What are some parameters you can tune?

The most important parameters are the following:

n estimators: use between 100 and 1000

learning rate :use between 0.01 and 0.1

max depth: use between 5 and 20

num leaves: use default

bagging fractionor feature fraction:to make it more like a RF
objective: more on the choices here later

You can always tune them with grid search, random search, Bayesian
optimization or early stopping for the number of trees (more on this later).

Missing values: standard answer
Whenever | interview data science candidates, | always ask how they would
handle missing values in their dataset. A typical answer is structured like this:

e Numerical features: use mean or median
e Categorical features: use unknown class

Sometimes | hear about creating a model to impute the missing values, but /
almost never hear that some models handle them natively!

Missing values: LightGBM answer

Missing value splits are learned separately on each node:

Say we've a node that splits on Square Meters, below
100 it goes left and above it goes right:

SgMeters < 100
SgMeters < 100

If a missing value comes in the training set, it will create a
separate missing split that minimizes the loss:

missing

Missing values: disaster averted!

"Hey, my credit score on your model is 1000 (perfect), I'm pretty sure it is wrong as

I'm a terrible credit card payer!”
-Business analyst to me at some fintech company

The model was indeed wrong: a large set of important features were missing in
production for a small set of users, but they were never missing in training.

The default missing values behaviour was leading to low risk predictions.

Never accept missing in production if there were none in training.

Categorical encoding: standard answer

Typical answers:

e Label encoding: categories become numbers like 0, 1, 2, 3, 4, ...
(surprisingly good for trees!)

e One-hot encoding: categories become a set of binary features like 000, 001,
010, ... (not great for trees unless the cardinality is low)

e Target encoding: average target value by category (powerful but risky)

e Frequency encoding: category frequency (might be a useful complement)

https://medium.com/data-design/visiting-categorical-features-and-encoding-in-decision-trees-53400fa65931

Categorical encoding: LightGBM answer

LightGBM uses histogram splits for categorical features as well:

1. It bins the categories together based on their loss gradient

2. This creates a histogram which is then sorted according to the objective
3. It finds the best split on the sorted histogram

This process is not so unlike target encoding, which explains its usefulness.

For a model specialized in categorical data, check out Catboost.

https://catboost.ai/

Loss functions menu

LightGBM offers ~15 different loss functions:

e Regression

L2: mean squared error (default, recovers the mean value)

L1: mean absolute error (good for outliers, recovers the median value®)
MAPE: mean absolute percentage error (good for time series)
Quantile: predict quantiles (might be used for prediction intervals)
Tweedie and gamma (good for skewed problems)

o Poisson (good for count data)

e C(Classification
o Logloss for binary classification (logloss leads to calibrated probabilities)
o Multiclass and cross-entropy for multi-class problems

e Ranking (lambdarank)
e Survival analysis: & but XGBoost offers some possibilities

O O O O O

*see this awesome blog post on MSE vs MAE vs log-transform for skewed data problems: Honey, | shrunk the target variable

https://florianwilhelm.info/2020/05/honey_i_shrunk_the_target_variable/

Lifetime value (LTV) modelling example

LTV is bimodal and right-skewed: most users don't spend a cent, some spend
thousands.

40000 -

First attempt: two-stage model, one classifier for ss.
paying users, one regressor to predict paying 30000+
user value. .

g
3 20000 -
w

15000 -

Second attempt: zero-inflated lognormal neural 1oo-
network. 408

LTV+1 ($)

Best solution: LightGBM with the Tweedie loss.

A Deep Probabilistic Model for Customer
Lifetime Value Prediction

https://arxiv.org/abs/1912.07753
https://arxiv.org/abs/1912.07753

Custom loss functions

You can even create your own custom loss function! You "only" need to provide
the gradient and hessian. Custom asymmetric huber loss function

e
(S R
o w
1 1

Simple application:
Asymmetric regression
when overpredicting is
worse than underpredicting.

1254

More penalty

100

w ~
o wm
1 |

Less penalty

Asymmetric huber loss value
N
(9]
1

o
1

1 1 1 I I 1 1 1 I
-100 -75 -50 =25 0 25 50 75 100
Recovery time error (mins)

Custom Loss Functions for Gradient Boosting

https://towardsdatascience.com/custom-loss-functions-for-gradient-boosting-f79c1b40466d

Custom loss functions

You can even create your own custom loss function! You "only" need to provide
the gradient and hessian.

def custom_asymmetric_train(y_true, y_pred):

]] . residual = (y_true - y_pred).astype("float")
Simple application:

grad = np.where(residual<@, -2x10.0xresidual, -2xresidual)
Asymmetric regression hess = np.where(residual<d, 2%10.0, 2.0)
when overpredicting is Feturn grady hess

worse than underpredicting.

def custom_asymmetric_valid(y_true, y_pred):
residual = (y_true - y_pred).astype("float")
loss = np.where(residual < 0, (residualxx2)*10.0, residualx*2)

return "custom_asymmetric_eval', np.mean(loss), False

Custom Loss Functions for Gradient Boosting

https://towardsdatascience.com/custom-loss-functions-for-gradient-boosting-f79c1b40466d

Early stopping

Choose the number of iterations that

... . . — Training |

minimizes the validation loss. \ —— Validsrioniose
o] _ﬁ — Optimal tree number
: | rcEee ment

reg.fit(train X, train vy,

callbacks=[lgbm.early stopping(5)],

eval set=(val X, val y)) o3

For the Kaggle housing example, it 0.2

netted a tiny score improvement (80

positions / 2% improvement). 0.1
0.0 1

0 10 20 30 40
Number of trees

How to use early stopping in Xgboost training?

https://mljar.com/blog/xgboost-early-stopping/

Sample / class weights

Class weights (class creation): class weight (dict, 'balanced' or None)
Sample weights (fit): sample weight (array-like of shape = [n samples])

Use them for imbalanced datasets instead of over/under sampling as it's more
efficient and leads to similar results.

. JFPuget & ~ o
@JFPuget

Just donlt use SMOTE: éﬁ%xisPerrierRetweete(’i-

At last a paper on SMOTE that confirms my
experience. TL;DR SMOTE is detrimental.

Gael Varoquaux @GaelVaroquaux - Jun 10
Replying to @JFPuget
Our experience is also that SMOTE is not useful.

@JFPuget

https://twitter.com/JFPuget/status/1535323707253882881

Other cool features

e Monotonicity constraints: force a monotonic relation between one or more
features and the predictions, which is quite useful for interpretability or
business constraints!

e Random forest "boosting" method: sometimes you just need a good old RF.

e Distributed computation and GPU support: never tried myself but XGBoost
for Spark works wonders with large datasets.

Interpretability: SHAP

Use SHAP instead of split count or gain.

Individual examples below, overall importance on

the right:

higher = lower
f(x) base value
11.52 11.62 111.74 11.82 11.92 12.02 1212 12.22 12.32 12.42 12.52

g DY N S K

=468 OveraIICond 6 GarageArea 730 OverallQual =5 GrLivArea = 896 'Neighborhood = NAmes GarageCavs 1 YearRemodAdd 1961 1stFIrSF = 896 KitchenQual =

higher & lower
base value f(x)

.62 11.72 11.82 11.92 12.02 1213 12.22 12.32 12.

3 ‘)))))))»))))l‘l‘-_-(((((((

97 YearRemodAdd = 1,998 Bsm(FlnSF‘l 791 LmArea 1.383e+4 | GrleArea 1629 Neighborhood = Gilbert ' OverallQual = 5 ' KitchenQual = TA TotalBsmtSF = 928 ' 1stFIrSF

OverallQual
GrLivArea
Neighborhood
TotalBsmtSF
BsmtFinSF1
OverallCond
KitchenQual
GarageCars
1stFIrSF
YearRemodAdd
LotArea
YearBuilt
GarageArea
CentralAir
BsmtFullBath
FAreplaceQu
Freplaces

Id

2ndFIrSF

SaleCondition

-——-—-—**—-—-—-—-—

£
-
o
e
i
k
3

-03

02 -01 00 01 02 03
SHAP value (impact on model output)

04

High

Low

Feature value

https://github.com/slundberg/shap

Conclusion and takeaways

e LightGBM and XGBoost provide not only a reasonable baseline with minimal
tuning and engineering necessary, but they also allow you to get to the next
level.

e Most of your tabular modelling needs are covered with built-in features or
well-integrated libraries (e.g. Sklearn, pandas-profiling, SHAP).

e This leaves you time to focus on what really matters in applied ML:

Conclusion and takeaways

e LightGBM and XGBoost provide not only a reasonable baseline with minimal
tuning and engineering necessary, but they also allow you to get to the next

level.

e Most of your tabular modelling needs are covered with built-in features or
well-integrated libraries (e.g. Sklearn, pandas-profiling, SHAP).

e This leaves you time to focus on what really matters in applied ML.:

O

o O O O

Building new features (new data sources or feature engineering)

Proper evaluation methodology (random train-test split is never enough!)
Translating model results into the business bottomline ($)

Automated decision making with the model outputs ("the last mile is the longest")
Model deployment infrastructure and monitoring

https://www.featuretools.com/
https://www.youtube.com/watch?v=wWxqnZb-LSk

Thanks!

Bojan Tunguz

@tunguz
It takes a lot of study to learn all the necessary
Machine Learning techniques and tools.

It takes a lot of experience to learn which ones to
ignore.

Check out the notebook here

Follow me on Twitter at @PedroTabacof or add me on Linkedin

https://github.com/tabacof/pydata2022london/blob/main/PyData%20London%202022%20-%20LightGBM%20House%20Prices%20Example.ipynb
https://twitter.com/PedroTabacof
https://www.linkedin.com/in/tabacof/

